Thursday, March 19, 2020

Reading Essay Example

Reading Essay Example Reading Essay Reading Essay Children struggling to learn how to read are a common sight nowadays in many schools throughout the country. Researchers have discovered a way how to successfully teach children to read, which focuses on phonemic awareness, phonics, fluency, vocabulary, and text comprehension. Phonemic awareness is the capability to hear, classify and manage sounds of oral words. This is of great use in reading because it improves the way children read words and the way they comprehend the text. By segmenting words into phonemes, children with high phonemic awareness tend to spell words easier than those without phonemic awareness. A best practice for phonemic awareness would be Phoneme Segmentation, which is where children break a word into its separate sounds. In order to facilitate the learning of the association between the letters and the sounds of spoken language, Phonics instruction is introduced. It makes the children understand how the way to properly pronounce words and the association of written words and spoken sounds. With the ability to read the words in a text accurately and quickly, children with systematic phonics instruction tend to have higher reading comprehension than those with non-systematic or no phonics instruction. A good approach for this instruction would be to use parts of familiar words to identify words that they don’t know that have similar parts, like an analogy. Fluency is the aptitude of a student to read a passage perfectly and quickly. It helps students focus on understanding what they are reading. Monitored and repeated reading helps improve the comprehension of the student and the overall reading acquisition. A good way that a student can practice oral reading would be a Student-adult reading. This can be easily done at home with the parent of the student; the adult first reads the passage providing a illustrative of eloquent reading. Then the student rereads the passage with the adult’s guidance. Vocabulary speaks about the words we should know in order to interact with other people verbally. In order to fully understand what they are reading, the readers must first know the meaning of unfamiliar words in the text. Children learn words meaning in their environment, through conversations among people, grown ups in particular. Words that they do not learn indirectly can be thought directly. It is helpful to know the meaning of unfamiliar words in a text before reading it. This will provide them with new words and will help them have a higher comprehension of the text. We read in order to comprehend what is written in the text. Through the help of comprehension methods, a teacher can help students improve their text comprehension. Comprehension methods are set of steps that commendable readers use to understand a text. A good way to develop a good comprehension would be to ask the students to generate questions. This would make the students aware if they can answer and this could check if the students truly understand the text they are reading. Implementation of these ways of teaching students as a standard of education would help children read throughout the country.

Monday, March 2, 2020

Zirconium Facts (Atomic Number 40 or Zr)

Zirconium Facts (Atomic Number 40 or Zr) Zirconium is a gray metal that has the distinction of being the last element symbol, alphabetically, of the periodic table. This element finds use in alloys, particularly for nuclear applications. Here are more zirconium element facts: ZirconiumBasic Facts Atomic Number: 40 Symbol: Zr Atomic Weight: 91.224 Discovery: Martin Klaproth 1789 (Germany); zircon mineral is mentioned in biblical texts. Electron Configuration: [Kr] 4d2 5s2 Word Origin: Named for the mineral zircon. Persian zargun: gold-like, which describes the color of the gemstone known as zircon, jargon, hyacinth, jacinth, or ligure. Isotopes: Natural zirconium consists of 5 isotopes; 28 additional isotopes have been characterized. The most common natural isotope is 90Zr, which accounts for 51.45 percent of the element. Of the radioisotopes, 93Zr has the longest half-life, which is 1.53x106 years. Properties: Zirconium is a lustrous grayish-white metal. The pure element is malleable and ductile, but the metal becomes hard and brittle when it contains impurities. Zirconium resists corrosion from acids, alkalis, water, and salt, but it does dissolve in hydrochloric or sulfuric aicd. Finely-divided metal may ignite spontaneously in air, especially at elevated temperatures, but the solid metal is relatively stable. Hafnium is found in zirconium ores and is difficult to separate from zirconium. Commercial-grade zirconium contains from 1% to 3% hafnium. Reactor-grade zirconium is essentially free of hafnium. Uses: Zircaloy(R) is an important alloy for nuclear applications. Zirconium has a low absorption cross section for neutrons, and is therefore used for nuclear energy applications, such as for cladding fuel elements. Zirconium is exceptionally resistant to corrosion by seawater and many common acids and alkalis, so it is used extensively by the chemical industry where corrosive agents are employed. Zirconium is used as an alloying agent in steel, a getter in vacuum tubes, and as a component in surgical appliances, photoflash bulbs, explosive primers, rayon spinnerets, lamp filaments, etc. Zirconium carbonate is used in poison ivy lotions to combine with urushiol. Zirconium alloyed with zinc becomes magnetic at temperatures below 35 °K. Zirconium with niobium is used to make low temperature superconductive magnets. Zirconium oxide (zircon) has a high index of refraction and is used as a gemstone. The impure oxide, zirconia, is used for laboratory crucibles that will withstand heat sh ock, for furnace linings, and by the glass and ceramic industries as a refractory material. Occurrence: Zirconium does not exist as a free element, primarily due to its reactivity with water. The metal has a concentration of around 130 mg/kg in the Earths crust and 0.026 ÃŽ ¼g/L  in sea water. Zirconium is found in S-type stars, the Sun, and meteorites. Lunar rocks contain a zirconium oxide concentration comparable to that of terrestrial rocks. The primary commercial source of zirconium is the silicate mineral zircon (ZrSiO4), which occurs in Brazil, Australia, Russia, South Africa, India, the United States, and in smaller amounts elsewhere in the world. Health Effects: The average human body contains about 250 milligrams of zirconium, but the element serves no known biological function. Dietary sources of zirconium include whole wheat, brown rice, spinach, eggs, and beef. Zirconium is found in antiperspirants and water purification systems. Its use as a carbonate to treat poison ivy has been discontinued because some people experienced skin reactions. While zirconium exposure is generally considered safe, exposure to the metal powder can cause skin irritation. The element is not considered to be either genotoxic or carcinogenic. Crystal Structure: Zirconium has an alpha phase and a beta phase. At room temperature, the atoms form close-packed hexagonal ÃŽ ±-Zr. At 863  Ã‚ °C, the structure transitions to body-centered ÃŽ ²-Zr. Zirconium Physical Data Element Classification: Transition Metal Density (g/cc): 6.506 Melting Point (K): 2125 Boiling Point (K): 4650 Appearance: grayish-white, lustrous, corrosion-resistant metal Atomic Radius (pm): 160 Atomic Volume (cc/mol): 14.1 Covalent Radius (pm): 145 Ionic Radius: 79 (4e) Specific Heat (20 °C J/g mol): 0.281 Fusion Heat (kJ/mol): 19.2 Evaporation Heat (kJ/mol): 567 Debye Temperature (K): 250.00 Pauling Negativity Number: 1.33 First Ionizing Energy (kJ/mol): 659.7 Oxidation States: 4 Lattice Structure: Hexagonal Lattice Constant (Ã…): 3.230 Lattice C/A Ratio: 1.593 References Emsley, John (2001). Natures Building Blocks. Oxford: Oxford University Press. pp. 506–510. ISBN 0-19-850341-5.Lide, David R., ed. (2007–2008). Zirconium. CRC Handbook of Chemistry and Physics. 4. New York: CRC Press. p. 42. ISBN 978-0-8493-0488-0.Meija, J.; et al. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305 Return to the Periodic Table